Dual and Quad Micropower Single Supply Rail-to-Rail Input and Output (RRIO) Op-Amp

The ISL28278 and ISL28478 are dual and quad channel micropower operational amplifiers optimized for single supply operation over the 2.4 V to 5 V range. They can be operated from one lithium cell or two Ni-Cd batteries. For equivalent performance in a single channel op-amp reference EL8178.

These devices feature an Input Range Enhancement Circuit (IREC) which enables them to maintain CMRR performance for input voltages 10% above the positive supply rail and to 100 mV below the negative supply. The output operation is rail to rail.

The ISL28278 and ISL28478 draw minimal supply current while meeting excellent DC-accuracy, AC-performance, noise and output drive specifications. The ISL28278 contains a power down enable pin that reduces the power supply current to typically $4 \mu \mathrm{~A}$ in the disabled state.

Pinouts

ISL28478 (16 LD QSOP) TOP VIEW

Features

- Low power $120 \mu \mathrm{~A}$ typical supply current (ISL28278)
- $225 \mu \mathrm{~V}$ max offset voltage
- 30pA max input bias current
- 300kHz typical gain-bandwidth product
- 105dB typical PSRR
- 100dB typical CMRR
- Single supply operation down to 2.4 V
- Input is capable of swinging above $\mathrm{V}+$ and below V (ground sensing)
- Rail-to-rail input and output (RRIO)
- Enable Pin (ISL28278 only)
- Pb-free plus anneal available (RoHS compliant)

Applications

- Battery- or solar-powered systems
- 4 mA to 25 mA current loops
- Handheld consumer products
- Medical devices
- Thermocouple amplifiers
- Photodiode pre-amps
- pH probe amplifiers

Ordering Information

PART NUMBER (Note)	PART MARKING	PACKAGE (Pb-Free)	PKG. DWG. \#
ISL28278FAZ*	$28278 F A Z$	16 Ld QSOP	MDP0040
ISL28478FAZ*	$28478 F A Z ~$	16 Ld QSOP	MDP0040

*"-T7" suffix is for tape and reel. Please refer to TB347 for details on reel specifications.
NOTE: Intersil Pb-free plus anneal products employ special Pb-free material sets; molding compounds/die attach materials and 100% matte tin plate termination finish, which are RoHS compliant and compatible with both SnPb and Pb -free soldering operations. Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb -free requirements of IPC/JEDEC J STD-020.

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$)	
Supply Voltage, V_{-}to V_{+}	5.5 V
Supply Turn On Voltage Slew Rate	1V/us
Differential Input Current	5mA
Differential Input Voltage	0.5V
Input Voltage	$\mathrm{V}-0.5 \mathrm{~V}$ to $\mathrm{V}++0.5 \mathrm{~V}$
ESD Tolerance	
Human Body Model	.3kV
Machine Model.	300 V

Thermal Information

Thermal Resistance	$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$
16 Ld QSOP Package	112
Output Short-Circuit Duration	Indefinite
Ambient Operating Temperature Range	$40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Junction Temperature	$+125^{\circ} \mathrm{C}$
Pb-free reflow profile http://www.intersil.com/pbfree/Pb-Fr	see link below

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_{J}=T_{C}=T_{A}$

Electrical Specifications $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.
Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, temperature data established by characterization

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 1) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 1) } \end{gathered}$	UNIT
DC SPECIFICATIONS						
V_{OS}	Input Offset Voltage		$\begin{aligned} & -225 \\ & -450 \end{aligned}$	± 0.20	$\begin{aligned} & 225 \\ & 450 \end{aligned}$	$\mu \mathrm{V}$
$\frac{\Delta \mathrm{V}_{\mathrm{OS}}}{\Delta \mathrm{~T}}$	Input Offset Voltage vs Temperature			1.0		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
los	Input Offset Current	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & -30 \\ & -80 \end{aligned}$	± 5	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	pA
I_{B}	Input Bias Current	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\begin{aligned} & -30 \\ & -80 \end{aligned}$	± 10	$\begin{aligned} & 30 \\ & 80 \end{aligned}$	pA
CMIR	Common-Mode Voltage Range	Guaranteed by CMRR	0		5	V
CMRR	Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$ to 5 V	$\begin{aligned} & 80 \\ & 75 \end{aligned}$	100		dB
PSRR	Power Supply Rejection Ratio	$\mathrm{V}+=2.4 \mathrm{~V}$ to 5 V	$\begin{aligned} & 85 \\ & 80 \end{aligned}$	105		dB
Avol	Large Signal Voltage Gain	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	$\begin{aligned} & 200 \\ & 190 \end{aligned}$	300		V/mV
		$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$ to $4.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		60		V/mV
$\mathrm{V}_{\text {OUT }}$	Maximum Output Voltage Swing	Output low, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$		3	$\begin{gathered} 6 \\ 30 \end{gathered}$	mV
		Output low, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		130	$\begin{aligned} & 175 \\ & 225 \end{aligned}$	mV
		Output high, $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$	$\begin{gathered} 4.990 \\ 4.97 \end{gathered}$	4.996		V
		Output high, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$	$\begin{aligned} & 4.800 \\ & 4.750 \end{aligned}$	4.880		V
$\mathrm{I}_{\mathrm{S}, \mathrm{ON}}$	Quiescent Supply Current, Enabled	ISL28278, All channels enabled.		120	$\begin{aligned} & 156 \\ & 175 \end{aligned}$	$\mu \mathrm{A}$
		ISL28478, All channels enabled.		240	$\begin{aligned} & 315 \\ & 350 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S, OFF }}$	Quiescent Supply Current, Disabled	All channels disabled. ISL28278		4	$\begin{aligned} & 7 \\ & 9 \end{aligned}$	$\mu \mathrm{A}$

Electrical Specifications $\quad \mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise specified.
Boldface limits apply over the operating temperature range, $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, temperature data established by characterization (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	$\begin{gathered} \text { MIN } \\ \text { (Note 1) } \end{gathered}$	TYP	$\begin{gathered} \text { MAX } \\ \text { (Note 1) } \end{gathered}$	UNIT
${ }^{1}{ }^{+}$	Short Circuit Sourcing Capability	$\mathrm{R}_{\mathrm{L}}=10 \Omega$	$\begin{aligned} & 29 \\ & 24 \end{aligned}$	31		mA
Io-	Short Circuit Sinking Capability	$R_{L}=10 \Omega$	$\begin{aligned} & 24 \\ & 20 \end{aligned}$	26		mA
VSUPPLY	Supply Operating Range	V - to V_{+}	2.4		5.0	V
$\mathrm{V}_{\overline{\text { EN }}} \mathrm{H}$	$\overline{\text { EN }}$ Pin High Level	ISL28278	2			V
$V_{\text {ENL }}$	$\overline{\mathrm{EN}}$ Pin Low Level	ISL28278			0.8	V
${ }^{\text {ENN }}$ H	$\overline{\mathrm{EN}}$ Pin Input High Current	$\begin{aligned} & V \overline{E N}=V+ \\ & \text { ISL28278 } \end{aligned}$		0.8	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	$\mu \mathrm{A}$
${ }^{1} \mathrm{ENL}$	$\overline{\mathrm{EN}}$ Pin Input Low Current	$\begin{aligned} & \text { V } \overline{E N}=V- \\ & \text { ISL28278 } \end{aligned}$		0	0.1	$\mu \mathrm{A}$

AC SPECIFICATIONS

GBW	Gain Bandwidth Product	$\begin{aligned} & A_{V}=100, R_{F}=100 \mathrm{k} \Omega, R_{G}=1 \mathrm{k} \Omega, \\ & R_{L}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		300		kHz
e_{n}	Input Noise Voltage Peak-to-Peak	$\mathrm{f}=0.1 \mathrm{~Hz}$ to 10 Hz		4.5		$\mu \mathrm{V}_{\text {P-P }}$
	Input Noise Voltage Density	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$		45		$\mathrm{nVI} \sqrt{\mathrm{Hz}}$
i_{n}	Input Noise Current Density	$\mathrm{f}_{\mathrm{O}}=1 \mathrm{kHz}$		0.04		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
CMRR @ 60Hz	Input Common Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$ to V_{CM}		-70		dB
$\begin{aligned} & \text { PSRR+ @ } \\ & 120 \mathrm{~Hz} \end{aligned}$	Power Supply Rejection Ratio, +V	$\begin{aligned} & \mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V} \text { and } \pm 2.5 \mathrm{~V}, \\ & \mathrm{~V}_{\text {SOURCE }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		-80		dB
$\begin{array}{\|l} \text { PSRR- @ } \\ 120 \mathrm{~Hz} \end{array}$	Power Supply Rejection Ratio, -V	$\begin{aligned} & \mathrm{V}_{+}, \mathrm{V}_{\mathrm{L}}= \pm 1.2 \mathrm{~V} \text { and } \pm 2.5 \mathrm{~V} \\ & \mathrm{~V}_{\text {SOURCE }}=1 \mathrm{~V}_{\mathrm{P}-\mathrm{P},} \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } \mathrm{V}_{\mathrm{CM}} \end{aligned}$		-60		dB
TRANSIENT RESPONSE						
SR	Slew Rate		$\begin{aligned} & \pm 0.12 \\ & \pm 0.09 \end{aligned}$	± 0.14	$\begin{aligned} & \pm 0.16 \\ & \pm 0.21 \end{aligned}$	V/us
tEN	Enable to Output Turn-on Delay Time, $10 \% \overline{\mathrm{EN}}$ to 10% Vout	$\begin{aligned} & \mathrm{VEN}=5 \mathrm{~V} \text { to } 0 \mathrm{~V}, A_{V}=-1, \\ & R_{G}=R_{F}=R_{L}=1 k \text { to } V_{C M}, \text { ISL28278 } \end{aligned}$		2		$\mu \mathrm{s}$
	Enable to Output Turn-off Delay Time, $10 \% \overline{\mathrm{EN}}$ to 10% Vout	$\begin{aligned} & \mathrm{VEN}=0 \mathrm{~V} \text { to } 5 \mathrm{~V}, A_{\mathrm{V}}=-1, \\ & \mathrm{R}_{\mathrm{G}}=\mathrm{R}_{\mathrm{F}}=\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \text { to } \mathrm{V}_{\mathrm{CM}}, \text { ISL28278 } \end{aligned}$		0.1		$\mu \mathrm{s}$

NOTE:

1. Parts are 100% tested at $+25^{\circ} \mathrm{C}$. Over temperature limits established by characterization and are not production tested.

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, unless otherwise specified.

FIGURE 1. FREQUENCY RESPONSE vs SUPPLY VOLTAGE

FIGURE 3. Avol vs FREQUENCY @ 100k Ω LOAD

FIGURE 5. PSRR vs FREQUENCY

FIGURE 2. FREQUENCY RESPONSE vs SUPPLY VOLTAGE

FIGURE 4. Avol vs FREQUENCY @ $1 \mathrm{k} \Omega$ LOAD

FIGURE 6. CMRR vs FREQUENCY

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{v}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=0$ open, unless otherwise specified.

FIGURE 7. VOLTAGE NOISE vs FREQUENCY

FIGURE 9. 0.1 Hz TO 10 Hz INPUT VOLTAGE NOISE

FIGURE 11. LARGE SIGNAL TRANSIENT RESPONSE

FIGURE 8. CURRENT NOISE vs FREQUENCY

FIGURE 10. SMALL SIGNAL TRANSIENT RESPONSE

FIGURE 12. ISL28278 ENABLE TO OUTPUT DELAY TIME

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, unless otherwise specified.

FIGURE 13. INPUT OFFSET VOLTAGE vs COMMON MODE INPUT VOLTAGE

FIGURE 15. ISL28478 SUPPLY CURRENT vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\mathrm{INF}$

FIGURE 17. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 14. INPUT BIAS CURRENT vs COMMON-MODE INPUT VOLTAGE

FIGURE 16. ISL28278 DISABLED SUPPLY CURRENT vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{\mathbf{-}}= \pm 2.5 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=\mathrm{INF}$

FIGURE 18. V_{OS} vs TEMPERATURE, $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$

Typical Performance Curves $\mathrm{v}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{v}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, unless otherwise specified.

FIGURE 19. $\mathrm{I}_{\mathrm{BIAS}}{ }^{+}$vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 21. $\mathrm{I}_{\mathrm{BIAS}}{ }^{+}$vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$

FIGURE 23. I_{OS} vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 20. $\mathrm{I}_{\mathrm{BIAS}}{ }^{-} \mathrm{vs}$ TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 22. $\mathrm{I}_{\mathrm{BIAS}} \mathbf{- v s}^{-\mathrm{vs}}$ TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{\mathbf{-}}= \pm 1.2 \mathrm{~V}$

FIGURE 24. $A_{\text {Vol }}$ vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k}$

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, unless otherwise specified.

FIGURE 25. $A_{V O L}$ vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$

FIGURE 27. PSRR vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 1.2 \mathrm{~V}$ TO $\pm 2.5 \mathrm{~V}$

FIGURE 29. $\mathrm{V}_{\text {OUT }}$ HIGH vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$, $R_{\mathrm{L}}=100 \mathrm{k}$

FIGURE 26. CMRR vs TEMPERATURE, $\mathrm{V}_{\mathrm{CM}}=+2.5 \mathrm{~V}$ TO -2.5V $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 28. $\mathrm{V}_{\text {OUT }}$ HIGH vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$, $R_{L}=1 k$

FIGURE 30. $\mathrm{V}_{\text {OUT }}$ LOW vs TEMPERATURE, $\mathrm{V}_{\mathbf{+}}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$, $R_{L}=1 k$

Typical Performance Curves $\mathrm{V}_{+}=5 \mathrm{~V}, \mathrm{~V}_{-}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=$ Open, unless otherwise specified.

FIGURE 31. $\mathrm{V}_{\text {OUT }}$ LOW vs TEMPERATURE, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$, $R_{L}=100 k$

FIGURE 33. - OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, $\mathrm{V}_{\mathrm{IN}}=+2.55 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10$, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 32. + OUTPUT SHORT CIRCUIT CURRENT vs TEMPERATURE, $\mathrm{V}_{\mathrm{IN}}=-2.55 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10$, $\mathrm{V}_{+}, \mathrm{V}_{-}= \pm 2.5 \mathrm{~V}$

FIGURE 34. + SLEW RATE vs TEMPERATURE, $\mathrm{V}_{\mathrm{OUT}}= \pm 1.5 \mathrm{~V}$, $A_{V}=+2$

FIGURE 35. - SLEW RATE vs TEMPERATURE, $\mathrm{V}_{\mathrm{OUT}}= \pm 1.5 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=\boldsymbol{+ 2}$

Pin Descriptions

$\begin{aligned} & \text { ISL28278 } \\ & (16 \text { LD QSOP) } \end{aligned}$	$\begin{gathered} \text { ISL28478 } \\ \text { (16 LD QSOP) } \end{gathered}$	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION	
3	1	OUT_A	Circuit 3	Amplifier A output	
4	2	IN -_A	Circuit 1	Amplifier A inverting input	
5	3	$\mathrm{IN}+$ _A	Circuit 1	Amplifier A non-inverting input	
15	4	V+	Circuit 4	Positive power supply	
12	5	$1 \mathrm{~N}+$ _ ${ }^{\text {B }}$	Circuit 1	Amplifier B non-inverting input	
13	6	IN -_B	Circuit 1	Amplifier B inverting input	
14	7	OUT_B	Circuit 3	Amplifier B output	
1, 2, 8, 9, 10, 16	8, 9	NC		No internal connection	
	10	OUT_C	Circuit 3	Amplifier C output	
	11	IN-_C	Circuit 1	Amplifier C inverting input	
	12	IN+_C	Circuit 1	Amplifier B non-inverting input	
7	13	V-	Circuit 4	Negative power supply	
	14	IN+_D	Circuit 1	Amplifier D non-inverting input	
	15	IN-_D	Circuit 1	Amplifier D inverting input	
	16	OUT_D	Circuit 3	Amplifier D output	
6		$\overline{\mathrm{EN}}$ _A	Circuit 2	Amplifier A enable pin internal pull-down; Logic " 1 " selects the disabled state; Logic " 0 " selects the enabled state.	
11		$\overline{\mathrm{EN}}$ _B	Circuit 2	Amplifier B enable pin with internal pull-down; Logic "1" selects the disabled state; Logic "0" selects the enabled state.	
CIRCUIT 1		CIRCUIT 2 CIRCUIT 4			

Applications Information

Introduction

The ISL28278 and ISL28478 are dual and quad CMOS rail-to-rail input, output (RRIO) micropower operational amplifiers. These devices are designed to operate from a single supply (2.4 V to 5.0 V) or dual supplies $(\pm 1.2 \mathrm{~V}$ to $\pm 2.5 \mathrm{~V}$) while drawing only $120 \mu \mathrm{~A}$ (ISL28278) of supply current. This combination of low power and precision performance makes these devices suitable for solar and battery power applications.

Rail-to-Rail Input

Many rail-to-rail input stages use two differential input pairs, a long-tail PNP (or PFET) and an NPN (or NFET). Severe penalties have to be paid for this circuit topology. As the input signal moves from one supply rail to another, the operational amplifier switches from one input pair to the other causing drastic changes in input offset voltage and an
undesired change in magnitude and polarity of input offset current.

The ISL28278 achieves input rail-to-rail without sacrificing important precision specifications and degrading distortion performance. The devices' input offset voltage exhibits a smooth behavior throughout the entire common-mode input range. The input bias current versus the common-mode voltage range gives us an undistorted behavior from typically 100 mV below the negative rail and 10% higher than the V_{+} rail (0.5 V higher than V_{+}when V_{+}equals 5 V).

Input Protection

All input terminals have internal ESD protection diodes to the positive and negative supply rails, limiting the input voltage to within one diode beyond the supply rails. There is an additional pair of back-to-back diodes across the input terminals. For applications where the input differential voltage is expected to exceed 0.5 V , external series resistors must be used to ensure the input currents never exceed 5 mA .

Rail-to-Rail Output

A pair of complementary MOSFET devices are used to achieve the rail-to-rail output swing. The NMOS sinks current to swing the output in the negative direction. The PMOS sources current to swing the output in the positive direction. Both parts, with a $100 \mathrm{k} \Omega$ load, will typically swing to within 4 mV of the positive supply rail and within 3 mV of the negative supply rail.

Enable/Disable Feature

The ISL28278 offers two $\overline{\mathrm{EN}}$ pins ($\overline{\mathrm{EN}} _\mathrm{A}$ and $\overline{\mathrm{EN}}$ _B) which disable the op amp when pulled up to at least 2.0 V . In the disabled state (output in a high impedance state), the part consumes typically $4 \mu \mathrm{~A}$. By disabling the part, multiple parts can be connected together as a MUX. The outputs are tied together in parallel and a channel can be selected by the $\overline{\mathrm{EN}}$ pins. The loading effects of the feedback resistors of the disabled amplifier must be considered when multiple amplifier outputs are connected together. The $\overline{\mathrm{EN}}$ pin also has an internal pull-down. If left open, the $\overline{\mathrm{EN}}$ pin will pull to the negative rail and the device will be enabled by default.

Using Only One Channel

The ISL28278 and ISL28478 are dual and quad channel op amps. If the application only requires one channel when using the ISL28278 or less than 4 channels when using the ISL28478, the user must configure the unused channel(s) to prevent them from oscillating. The unused channel(s) will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the negative input and ground the positive input (as shown in Figure 36).

FIGURE 36. PREVENTING OSCILLATIONS IN UNUSED CHANNELS

Proper Layout Maximizes Performance

To achieve the maximum performance of the high input impedance and low offset voltage of the ISL28278 and ISL28478, care should be taken in the circuit board layout. The PC board surface must remain clean and free of moisture to avoid leakage currents between adjacent traces. Surface coating of the circuit board will reduce surface moisture and provide a humidity barrier, reducing parasitic resistance on the board. When input leakage current is a concern, the use of guard rings around the amplifier inputs will further reduce leakage currents. Figure 37 shows a guard ring example for a unity gain amplifier that uses the low impedance amplifier output at the same voltage as the high impedance input to eliminate surface leakage. The guard ring does not need to be a specific width, but it should
form a continuous loop around both inputs. For further reduction of leakage currents, components can be mounted to the PC board using Teflon standoff insulators.

FIGURE 37. GUARD RING EXAMPLE FOR UNITY GAIN AMPLIFIER

Example Application

Thermocouples are the most popular temperature-sensing device because of their low cost, interchangeability, and ability to measure a wide range of temperatures. The ISL28X78 (Figure 38) is used to convert the differential thermocouple voltage into single-ended signal with 10X gain. The ISL28X78's rail-to-rail input characteristic allows the thermocouple to be biased at ground and the amplifier to run from a single 5 V supply.

FIGURE 38. THERMOCOUPLE AMPLIFIER

Current Limiting

The ISL28278 and ISL28478 have no internal currentlimiting circuitry. If the output is shorted, it is possible to exceed the Absolute Maximum Rating for output current or power dissipation, potentially resulting in the destruction of the device.

Power Dissipation

It is possible to exceed the $+150^{\circ} \mathrm{C}$ maximum junction temperatures under certain load and power-supply conditions. It is therefore important to calculate the maximum junction temperature ($T_{J M A X}$) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related in Equation 1:

$$
\begin{equation*}
\mathrm{T}_{\text {JMAX }}=\mathrm{T}_{\text {MAX }}+\left(\theta_{\mathrm{JA}} \times \text { PD } \text { MAXTOTAL }\right) \tag{EQ.1}
\end{equation*}
$$

where:

- PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package ($\mathrm{PD}_{\mathrm{MAX}}$)
- $\mathrm{PD}_{\mathrm{MAX}}$ for each amplifier is calculated in Equation 2:
$P D_{\text {MAX }}=2 * V_{S} \times I_{\text {SMAX }}+\left(V_{S}-V_{\text {OUTMAX }}\right) \times \frac{V_{\text {OUTMAX }}}{R_{\mathrm{L}}}$ (EQ. 2)
where:
- $\mathrm{T}_{\mathrm{MAX}}=$ Maximum ambient temperature
- $\theta_{\mathrm{JA}}=$ Thermal resistance of the package
- $P D_{\text {MAX }}=$ Maximum power dissipation of 1 amplifier
- $\mathrm{V}_{\mathrm{S}}=$ Supply voltage (Magnitude of V_{+}and V_{-})
- $I_{\text {MAX }}=$ Maximum supply current of 1 amplifier
- $\mathrm{V}_{\text {OUTMAX }}=$ Maximum output voltage swing of the application
- $\mathrm{R}_{\mathrm{L}}=$ Load resistance

Quarter Size Outline Plastic Packages Family (QSOP)

MDP0040
QUARTER SIZE OUTLINE PLASTIC PACKAGES FAMILY

SYMBOL	INCHES				
	QSOP16	QSOP24	QSOP28	TOLERANCE	NOTES
A	0.068	0.068	0.068	Max.	-
A1	0.006	0.006	0.006	± 0.002	-
A2	0.056	0.056	0.056	± 0.004	-
b	0.010	0.010	0.010	± 0.002	-
c	0.008	0.008	0.008	± 0.001	-
D	0.193	0.341	0.390	± 0.004	1,3
E	0.236	0.236	0.236	± 0.008	-
E1	0.154	0.154	0.154	± 0.004	2,3
e	0.025	0.025	0.025	Basic	-
L	0.025	0.025	0.025	± 0.009	-
L1	0.041	0.041	0.041	Basic	-
N	16	24	28	Reference	-

Rev. F 2/07
NOTES:

1. Plastic or metal protrusions of 0.006 " maximum per side are not included.
2. Plastic interlead protrusions of 0.010 " maximum per side are not included.
3. Dimensions " D " and "E1" are measured at Datum Plane " H ".
4. Dimensioning and tolerancing per ASME Y14.5M-1994.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

[^0]For information regarding Intersil Corporation and its products, see www.intersil.com

[^0]: Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

